4. Central nervous system (CNS) tumours

Background
Two important considerations underpin the choice of treatment fractionation in neuro-oncology. First, the results of treatment vary widely and, second, the brain and spinal cord are susceptible to late radiation damage which is strongly dependent on radiation dose per fraction. The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) papers published in 2010 provide details of normal tissue tolerances for brain, brainstem, optic nerves and chiasm, hearing and spinal cord.1–9 Patients with a life expectancy of more than 12–18 months are rarely treated with doses per fraction greater than 2 Gray (Gy). With increased use of inverse planned intensity-modulated radiotherapy (IMRT), consideration must be given to appropriate dose constraints to serial structures, balancing tumour control against risk of toxicity.

High-grade glioma
Radical treatment
Retrospective analyses and one randomised trial have demonstrated a dose–response relationship for high-grade glioma up to, but not beyond, 60 Gy in 30 fractions.10–12 This has led to the adoption of the dose regimen of 60–65 Gy delivered in 1.8–2.0 Gy fractions as standard in the therapy of better prognosis patients with high-grade malignant glioma. Further attempts to improve response through hyperfractionation or accelerated fractionation have not demonstrated a significant survival benefit.13,14 The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma has been shown to improve overall and progression-free survival.15 The study only included patients under the age of 70, and therefore careful consideration should be taken before offering chemoradiation therapy to patients over 70.

For World Health Organization (WHO) grade III gliomas with 1p and 19q chromosomal co-deletion, the addition of procarbazine, lomustine and vincristine (PCV) chemotherapy, either before or after radiotherapy, has recently been shown to improve overall survival.16,17 In trials for anaplastic oligodendroglioma and oligoastrocytoma, the radiotherapy dose was 59.4 Gy in 33 fractions, providing Level 2a evidence for this regimen in WHO grade III glioma with oligodendrogial component.18–20 The ongoing European Organisation for Research and Treatment of Cancer (EORTC) 26053-22054 trial in non-1p19q co-deleted WHO grade III glioma also uses 59.4 Gy in 33 fractions (EORTC 26053-22054). Previous dose determination studies in high-grade gliomas used a dose of 60 Gy in 30 fractions for grade III gliomas.11,19

Recommendations
For patients of good performance status:

WHO Grade IV glioma (GBM)
60 Gy in 30 daily fractions over 6 weeks (Grade A)

WHO Grade III glioma
59.4 Gy in 33 fractions over 6.5 weeks (Grade A)
60 Gy in 30 fractions over 6 weeks (Grade B)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.18
Palliative treatment

Increasing age is a significant negative prognostic factor for patients with glioblastoma. Several trials in older patients have evaluated shorter courses of radiotherapy. One randomised trial which recruited patients aged ≥60 of Karnofsky Performance Status (KPS) ≥50 showed similar survival for 40 Gy in 15 fractions over three weeks compared to 60 Gy in 30 fractions. In another randomised trial in patients aged ≥60 principally of WHO performance status 0–2, 34 Gy in ten fractions appeared to have similar survival rates in patients over 60 and better survival in patients over 70 than 60 Gy in 30 fractions of radiotherapy alone. Shorter fractionations are therefore an option in elderly patients unsuitable for chemo-radiotherapy. Results are awaited from another randomised trial in patients aged 65 years and older of good performance status, which compared 40 Gy in 15 fractions over three weeks with the same radiotherapy plus concurrent and adjuvant temozolomide. For patients with high-grade glioma and poor performance status, when treatment is indicated, hypofractionated treatments are used. The most commonly adopted regimen in the UK is 30 Gy in six fractions over two weeks.

Recommendations

Elderly patients with glioblastoma unsuitable for chemo-radiotherapy:
- 40 Gy in 15 fractions over 3 weeks (Grade A)
- 34 Gy in 10 fractions over 2 weeks (Grade B)
- 30 Gy in 6 fractions over 2 weeks (Grade C)

For patients of poor performance status being treated for high-grade glioma:
- 30 Gy in 6 fractions over 2 weeks (Grade C)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.

Low-grade glioma

For low-grade glioma, two prospective randomised dose comparison trials have demonstrated no difference in outcome between 45 Gy in 25 fractions and 59.4 Gy in 33 fractions and between 50.4 Gy in 28 fractions and 64.8 Gy in 36 fractions. As a result, a standard dose of 50.4 Gy in 28 fractions of 1.8 Gy is accepted practice in the UK and internationally. A dose of 54 Gy in 30 fractions over six weeks was used in a randomised study of the timing of radiotherapy and also in the Radiation Therapy Oncology Group (RTOG) 9802 randomised trial which showed an overall survival benefit for the addition of adjuvant PCV chemotherapy after radiotherapy for high-risk low-grade glioma (age 18–39 and incompletely resected, or age ≥40 with any extent of resection). This provides Level 2b evidence for this regimen.
Recommendations

50.4 Gy in 28 daily fractions over 5.5 weeks (Grade A)
54 Gy in 30 daily fractions over 6 weeks (Grade B)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.18

Finally, it should be noted that, given the histological heterogeneity of gliomas, molecular pathology techniques are being used for tumour phenotyping and stratification of patients to appropriate adjuvant therapy. Allocation of treatment schedule in the future is unlikely to be made solely on the basis of histological grade as indicated above.

Meningioma

For benign meningioma (WHO grade I), radiotherapy may be used as radical treatment or postoperatively after incomplete resection or recurrence. Radiological surveillance is often an appropriate option for benign meningioma, depending on tumour growth, location and the risk to the patient from further tumour growth. Randomised clinical trial evidence is lacking, but generally excellent rates of local control are reported with radiotherapy doses of 50–54 Gy in 25–30 fractions. Small-volume benign tumours away from critical structures (for example, optic apparatus) may also be treated with stereotactic radiosurgery (SRS). Multiple series confirm long-term local control rates in excess of 80% using both fractionation and SRS. Lower doses have been used in more recent series with similar local control rates.

Radiotherapy should be considered for recurrent or incompletely resected meningioma of atypical histology. As for other benign intracranial tumours, fractionation has been governed by tolerance of local structures and adjacent brain tissue. There is an absence of prospective randomised clinical trial evidence for the use of adjuvant radiation therapy. However, multiple institutional series have demonstrated an improvement in local control and overall survival with adjuvant radiotherapy doses of 50.4–59.4 Gy in 28–33 fractions.29–32 There is some evidence to suggest that local control is enhanced at doses greater than 52 Gy.29–32

Radiotherapy should always be considered in malignant meningioma to a dose of 60 Gy in 30 fractions. Attempts at dose escalation using radiosurgery boost and accelerated hyperfractionation failed to achieve improved local control.31 The EORTC 26021-22021 phase II trial (NCT00626730) of postoperative radiotherapy for atypical and malignant meningiomas which treated Simpson stage 1–3 to 60 Gy and Simpson stages 4–5 to 70 Gy closed in 2013 and is in follow-up.33

Special consideration should be given to meningioma of the optic nerve sheath. There is now evidence from multiple institutional series that radiotherapy should be considered as a primary treatment option to achieve tumour control and consequentially prevent visual deterioration and symptomatic proptosis.34,35
Recommendations

Tumour grade 1:
- 50.4–54 Gy in 28–30 fractions over 5.5–6 weeks (Grade C)
- 50–55 Gy in 30–33 fractions over 6–6.5 weeks (Grade C)

Grade 2:
- 54–60 Gy in 30 fractions over 6 weeks (Grade D)

Grade 3:
- 60 Gy in 30 fractions over 6 weeks (Grade D)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.18

Pituitary tumours

Fractionation has been governed by tolerance of the local structures and prospective data is lacking. There are consistent reports of high local control when using 45 Gy in 25 fractions for non-functioning pituitary adenomas.36 This is commonly accepted as the standard dose for tumours without adverse features including suprasellar extension. There is data to suggest that the dose response may increase up to about 50 Gy, however, higher doses are generally reserved for tumours with adverse features.37 Small inoperable pituitary tumours away from optic apparatus may be suitable for single fraction stereotactic treatment which offers a similar local control rate.38

Although radiological control rates are high, biochemical remission rates for functional tumours vary considerably using conventional doses of 45–54 Gy (1.8–2 Gy per fraction). No clear dose response has been defined using fractionated treatment, however, higher marginal doses are used when using single fraction stereotactic treatment.

Recommendation

- 45 Gy in 25 fractions over 5 weeks (Grade D)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.18
Craniopharyngioma

Radiation therapy is typically used as an adjunct to surgery after maximal tumour resection. Doses between 50–60 Gy in 30 fractions have been used. Historical studies of postoperative radiotherapy showed a dose of 55 Gy to be a threshold dose in terms of local disease control, though concern over the risk of radiation induced optic neuropathy has resulted in median doses of 50–52.2 Gy in more recently published series.39–41

Recommendations

50–55 Gy in 30–33 fractions over 6–6.5 weeks (Grade D)
52.2–54 Gy in 27–28 fractions over 5.5 weeks (Grade D)

The types of evidence and the grading of recommendations used within this review are based on those proposed by the Oxford Centre for Evidence-based medicine.18
References

33. https://clinicaltrials.gov/ct2/show/NCT00626730 (last accessed 13/10/16)

